

Environmental Product Declaration

According to EN15804+A2 (+indicators A1)

This declaration is for: Screedment 32,5 R

Provided by: Hollandse Cement Maatschappij B.V.

MRPI® registration 1.1.00759.2025

program operator Stichting MRPI® publisher Stichting MRPI® www.mrpi.nl date of first issue **15-1-2025** date of this issue **15-1-2025** expiry date **15-1-2030**

COMPANY INFORMATION

Hollandse Cement Maatschappij B.V. Vlasweg 11 4782 PW Moerdijk Netherlands 0168 381 160 terminal@hcmcement.nl https://www.hcmcement.nl/nl/

MRPI® REGISTRATION

1.1.00759.2025

DATE OF THIS ISSUE

15-1-2025

EXPIRY DATE

15-1-2030

SCOPE OF DECLARATION

PROGRAM OPERATOR

Stichting MRPI®

Kingsfordweg 151 1043 GR Amsterdam

This MRPI®-EPD certificate is verified by Gert-Jan Vroege, Eco Intelligence. The LCA study has been done by Odile Koenders, SGS Search. The certificate is based on an LCA-dossier according to EN15804+A2 (+indicators A1). It is verified according to the 'MRPI®-EPD verification protocol November 2020.v4.0'. EPDs of construction products may not be comparable if they do not comply with EN15804+A2. Declaration of SVHC that are listed on the 'Candidate list of Substances of Very High Concern for authorisation' when content exceeds the limits for registration with ECHA.

DECLARED UNIT / FUNCTIONAL UNIT

1 Mass (t)

PRODUCT

Screedment 32.5 R

DESCRIPTION OF PRODUCT

Screedment 32.5 R is made in Moerdijk by mixing a combination of Portland cements and eco-fillers in a purpose-built 'dry substance mixer'. Screedment 32,5 R is designed to be used in cementitious screeds and species. This product can be used in combination with all other Portland cement clinker-based cements.

VISUAL PRODUCT

MORE INFORMATION

https://www.hcmcement.nl/nl/producten/screedment-br-32-5-r-br-hcm-cement-moerdijk-/

Ing. L. L. Oosterveen MSc. MBA	DEMONSTRATION	I OF VERIFICATION
Managing Director MRPI	CEN standard EN15804	serves as the core PCR [1]
	Independent verification	of the declaration an data
	according to EN1580	4+A2 (+indicators A1)
	internal:	external: X
Lucookur	Third party verifier: Gert-Jan Vroege, E	ico Intelligence
	[1] PCR = Product Category Rules	H
		Y

DETAILED PRODUCT DESCRIPTION (PART 1)

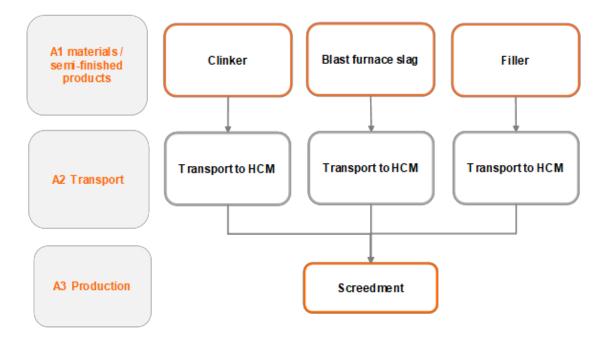
Screedment 32.5 R is made in Moerdijk by mixing a combination of Portland cements and eco-fillers in a purpose-built 'dry substance mixer'. Screedment 32,5 R is designed to be used in cementitious screeds and species. This product can be used in combination with all other Portland cement clinker-based cements.

Component (> 1%)	%(m/m) / ton
Clinker	50-90%
Blast furnace slag	10-50%
Filler	10-50%

SCOPE AND TYPE

This EPD is a specific EPD made for Screedment produced in facility Moerdijk, The Netherlands. The material input are from suppliers across the globe. The data collection is done in production year 2023. The results are calculated with SimaPro 9.5.0.0, using the databases ecoinvent 3.6 and the NMD process database 3.9 (cut-off method system model).

PRODU	JCT ST4	AGE	CONSTRUC PROCESS S				US	ER STA	GE			EN	D OF LI	FE STA	GE	BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES
Raw material supply	Transport	Manufacturing	Transport gate to site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse - Recovery - Recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
x	х	х	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND


X = Modules Assessed

ND = Not Declared

REPRESENTATIVENESS

ENVIRONMENTAL IMPACT per functional unit or declared unit (indicators A1)

E	enheid	A1	A2	A3	A1-A3	A 4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
ADPE	kg Sb eq.	5,11E-04	6,92E-05	3,27E-05	6,13E-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ADPF	MJ	3,75E+03	9,65E+01	2,81E+00	3,85E+03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
GWP	kg CO2 eq.	5,09E+02	7,21E+00	2,36E-01	5,17E+02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ODP	kg CFC11 eq.	1,09E-05	1,10E-06	1,66E-08	1,20E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
POCP	kg ethene eq.	1,42E-01	4,31E-03	1,69E-04	1,47E-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AP	kg SO2 eq.	1,08E+00	4,60E-02	2,04E-03	1,12E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EP	kg (PO4) 3- eq.	2,38E-01	1,01E-02	1,84E-04	2,48E-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toxicity	/ indicato	ors and	ECI (Du	tch marl	ket)														
HTP	kg DCB eq.	5,16E+01	2,06E+00	6,79E-01	5,44E+01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
FAETP	kg DCB eq.	6,15E-01	5,29E-02	1,22E-02	6,80E-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAETP	kg DCB eq.	4,06E+03	1,80E+02	2,85E+01	4,27E+03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TETP	kg DCB eq.	3,18E-01	9,08E-03	3,68E-02	3,64E-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ECI	euro	3,76E+01	8,58E-01	8,87E-02	3,85E+01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ADPF	kg Sn eq.	1,80E+00	4,64E-02	1,35E-03	1,85E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

ADPE	=	Abiotic Depletion Potential for non-fossil resources
ADPF	=	Abiotic Depletion Potential for fossil resources
GWP	=	Global Warming Potential
ODP	=	Depletion potential of the stratospheric ozone layer
POCP	=	Formation potential of tropospheric ozone photochemical oxidants
AP	=	Acidification Potential of land and water
EP	=	Eutrophication Potential
HTP	=	Human Toxicity Potential
FAETP	=	Fresh water aquatic ecotoxicity potential
MAETP	=	Marine aquatic ecotoxicity potential
TETP	=	Terrestrial ecotoxicity potential
ECI	=	Environmental Cost Indicator
ADPF	=	Abiotic Depletion Potential for fossil resources

ENVIRONMENTAL IMPACT per functional unit or declared unit (core indicators A2)

							unit					licato	13 AZ)						
	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP-total	kg CO2 eq	4,99E+02	7,30E+00	2,45E-01	5,06E+02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
GWP-fossil	kg CO2 eq	4,98E+02	7,27E+00	2,44E-01	5,06E+02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
GWP- biogenic	kg CO2 eq	8,04E-02	1,07E-02	8,57E-04	9,20E-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
GWP-luluc	kg CO2 eq	9,28E-02	1,16E-02	2,56E-04	1,05E-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ODP	kg CFC11 eq	9,71E-06	1,37E-06	1,89E-08	1,11E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AP	mol H+ eq.	1,52E+00	6,38E-02	2,40E-03	1,58E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EP-fresh water	kg PO4 eq.	1,59E-02	8,25E-05	1,92E-05	1,60E-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EP-marine	kg N eq.	4,60E-01	2,65E-02	2,92E-04	4,86E-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EP- terrestrial	mol N eq.	6,12E+00	2,92E-01	3,26E-03	6,42E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
POCP	kg NMVOC eq.	1,34E+00	7,65E-02	9,86E-04	1,42E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ADP- minerals & metals	kg Sb eq.	5,11E-04	6,92E-05	3,27E-05	6,13E-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ADP-fossil	MJ, net calorific value	3,25E+03	9,65E+01	2,65E+00	3,35E+03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WDP	m3 world eq. Deprived	2,19E+01	4,26E-01	7,41E-02	2,24E+01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
GWP-to	otal			=	Global	Warmin	g Poten	ial total											

GWP-fossil

=

GWP-biogenic

GWP-luluc

ODP

AP

EP-freshwater

EP-marine

EP-terrestrial

POCP

ADP-minerals & metals

ADP-fossil

WDP

- Global Warming Potential fossil fuels
- Global Warming Potential biogenictotal =

Global Warming Potential land use and land use change =

= Depletion potential of the stratospheric ozone layer

Acidification Potential, Accumulated Exceedence

= Eutrophication Potential, fraction of nutrients reaching freshwater end compartment

Eutrophication Potential, fraction of nutrients reaching marine end compartment =

Eutrophication Potential, Accumulated Exceedence =

= Formation potential of tropospheric ozone photochemical oxidants

- Abiotic Depletion Potential for non-fossil resources [1] =
 - Abiotic Depletion for fossil resources potential [1]

Water (user) deprivation potential, deprivation-weighted water consumption [1] =

Disclaimer [1]:

- The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

=

ENVIRONMENTAL IMPACT per functional unit or declared unit (additional indicators A2)

				-															
	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
PM	Disease inci-dence	7,54E-06	2,45E-07	1,89E-08	7,80E-06	ND													
IRP	kBq U235 eq.	1,13E+01	4,19E-01	9,51E-03	1,17E+01	ND													
ETP-fw	CTUe	8,46E+03	8,35E+01	1,80E+01	8,56E+03	ND													
HTP-c	CTUh	7,21E-08	3,25E-09	1,54E-09	7,69E-08	ND													
HTP-nc	CTUh	3,23E-06	6,38E-08	3,76E-08	3,33E-06	ND													
SQP	-	5,44E+02	8,15E+01	5,22E+00	6,31E+02	ND													

PM	=	Potential incidence of disease due to PM emissions
IRP	=	Potential Human exposure efficiency relative to U235 [1]
ETP-fw	=	Potential Comparative Toxic Unit for ecosystems [2]
HTP-c	=	Potential Comparative Toxic Unit for humans [2]
HTP-nc	=	Potential Comparative Toxic Unit for humans, non-cancer [2]
SQP	=	Potential soil quality index [2]

Disclaimer [1]:

- This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste.

Disclaimer [2]:

- The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

OUTPUT FLOWS AND WASTE CATEGORIES per functional unit or declared unit (A1 en A2)

	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
HWD	kg	1,65E-03	2,48E-04	1,74E-05	1,91E-03	ND													
NHWD	kg	7,55E+00	2,12E+00	2,71E-01	9,94E+00	ND													
RWD	kg	1,04E-02	6,33E-04	9,51E-06	1,10E-02	ND													
CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND													
MFR	kg	4,01E-04	0,00E+00	5,49E-02	5,53E-02	ND													
MER	kg	4,77E-05	0,00E+00	5,69E-03	5,74E-03	ND													
EEE	kg	0,00E+00	0,00E+00	5,39E-02	5,39E-02	ND													
ETE	kg	0,00E+00	0,00E+00	9,27E-02	9,27E-02	ND													

HWD	=	Hazardous Waste Disposed
NHWD	=	Non Hazardous Waste Disposed
RWD	=	Radioactive Waste Disposed
CRU	=	Components for reuse
MFR	=	Materials for recycling
MER	=	Materials for energy recovery
EEE	=	Exported Electrical Energy
ETE	=	Exported Thermal Energy

RESOURCE USE per functional unit or declared unit (A1 and A2)

	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
PERE	MJ	1,06E+02	2,05E+00	6,19E+01	1,70E+02	ND													
PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND													
PERT	MJ	1,06E+02	2,05E+00	6,19E+01	1,70E+02	ND													
PENRE	MJ	3,41E+03	1,02E+02	2,83E+00	3,51E+03	ND													
PENRM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND													
PENRT	MJ	3,41E+03	1,02E+02	2,83E+00	3,51E+03	ND													
SM	kg	1,36E+02	0,00E+00	1,01E-02	1,36E+02	ND													
RSF	MJ	1,12E+04	0,00E+00	0,00E+00	1,12E+04	ND													
NSRF	MJ	1,71E+02	0,00E+00	0,00E+00	1,71E+02	ND													
FW	m3	7,37E-01	1,69E-02	2,30E-03	7,56E-01	ND													

PERE	=	Use of renewable energy excluding renewable primary energy resources
PERM	=	Use of renewable energy resources used as raw materials
PERT	=	Total use of renewable primary energy resources
PENRE	=	Use of non-renewable primary energy resources excluding non-renewable energy resources used as raw materials
PENRM	=	Use of non-renewable primary energy resources used as raw materials
PENRT	=	Total use of non-renewable primary energy resources
SM	=	Use of secondary materials
RSF	=	Use of renewable secondary fuels
NSRF	=	Use of non-renewable secondary fuels
FW	=	Use of net fresh water

BIOGENIC CARBON CONTENT per functional unit or declared unit (A1 and A2)

	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
BBCpr	kg C	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND													
ВССра	kg C	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND													

BCCpr

= Biogenic carbon content in product

ВССра

Biogenic carbon content in packaging

ECO PLATFORM

CALCULATION RULES (PART 1)

Declared unit

The declared unit for the life cycle assessment is 1000 kg of Screedment.

Data collection

Input- and output data has been provided by HCM of the production year 2023 for the following inventory categories:

-Materials (raw materials and auxiliary materials);

-Energy (electricity and heat);

-Emissions to air, water and soil;

-Treatment and disposal of production wastes.

Data quality

Data was validated by SGS at the process level. This means that not only the mass balance was verified, but that in the case of major deviations from the average (for all type of in- and output) the suppliers were asked for further explanation.

Allocations

Allocation of environmental interventions can apply to multi-input, multi-output, recycling and reuse processes. No allocation of multi output processes is applied in this study. For other allocations, the provisions from the EN 15804 are followed.

SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION (PART 1)

Product stage (A1-A3)

This stage consists of the extraction of raw materials, energy which occurs upstream to the manufacturing process, transportation of raw materials, processing of the raw materials into the final product with all processes and energy required for production as well as packaging materials.

Data collection was performed by HCM in cooperation with their suppliers. The manufacturer compiled mass and energy balances based on average production in year 2023. The production facility in Moerdijk uses renewable electricity in their production process.

DECLARATION OF SVHC

No substances of very high concern are present in concentrations greater than 0,1% by weight in the product.

REFERENCES

NMD Bepalingsmethode Milieuprestatie Bouwwerken 1.2, NMD Januari 2025.

Product Category Rules voor cement en grondstoffen voor cementproductie ("NL-PCR") - versie 1.0

EN 15804:2012+A2:2019 Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products.

ISO, 2006. "Environmental management. Life cycle assessment - Principles and framework". ISO 14040:2006.

ISO, 2006. "Environmental management. Life cycle assessment - Requirements and Guidelines". ISO 14044:2006.

ISO, 2000. "Environmental labels and declarations – Type III environmental declarations", ISO/TR 14025:2000.

REMARKS

