Environmental **Product** **Declaration** According to EN15804+A2 This declaration is for: Closed Cavity Facade EWS01 of "Holland Park" Oslo Provided by: Scheldebouw b.v. - Permasteelisa Group program operator Stichting MRPI® publisher Stichting MRPI® www.mrpi.nl MRPI® registration 1.1.00569.2024 date of first issue 30-7-2024 date of this issue 30-7-2024 expiry date 30-7-2029 ### **COMPANY INFORMATION** ### PERMASTEELISA GROUP Scheldebouw b.v. – Permasteelisa Group Herculesweg 17 4338 PL MIDDELBURG + 31 (0)118 679 900 scheldebouw@permasteelisagroup.com https://scheldebouw.permasteelisagroup.com # **DESCRIPTION OF PRODUCT** A typical closed cavity facade fragment EWS01 (vision and spandrel area with horizontal GRC feature), including fixings and closures. Size: $2.40 \text{ m} \times 4.00 \text{ m} = 9.60 \text{ m}2$. The results are expressed per m2 of façade area by applying the conversion factor 1/9.60. Closed Cavity Facade EWS01 of "Holland Park" Oslo **DECLARED UNIT/FUNCTIONAL UNIT** # **MRPI® REGISTRATION** 1.1.00569.2024 **DATE OF ISSUE** 30-7-2024 **EXPIRY DATE** 30-7-2029 ### **VISUAL PRODUCT** **PRODUCT** # **SCOPE OF DECLARATION** This MRPI®-EPD certificate is verified by Ulbert Hofstra, SGS INTRON b.v. The LCA study has been done by G.J. van Beijnum, Nibe b.v. The certificate is based on an LCA-dossier according to EN15804+A2. It is verified according to the 'MRPI®-EPD verification protocol November 2020.v4.0'. EPD's of construction products may not be comparable if they do not comply with EN15804+A2. Declaration of SVHC that are listed on the 'Candidate list of Substances of Very High Concern for authorisation' when content exceeds the limits for registration with ECHA. # **MORE INFORMATION** https://scheldebouw.permasteelisagroup.com ### PROGRAM OPERATOR Stichting MRPI® Kingsfordweg 151 1043 GR Amsterdam Ing. L. L. Oosterveen MSc. MBA Managing Director MRPI # DEMONSTRATION OF VERIFICATION CEN standard EN15804 serves as the core PCR(a) Independent verification of the declaration an data according to EN15804+A2 internal: external: x Third party verifier: Ulbert Hofstra, SGS INTRON b.v. [a] PCR = Product Category Rules # **DETAILED PRODUCT DESCRIPTION** A typical closed cavity facade fragment EWS01 (vision and spandrel area with horizontal GRC feature), of the project Holland Park, Oslo, including fixings and closures. Size: $2.40 \, \text{m} \times 4.00 \, \text{m} = 9.60 \, \text{m} 2$. The results are expressed per m2 of façade area by applying the conversion factor 1 / 9.60. Weight: 168.7 kg/m2. Consisting of the following parts: Vision panel: glazing GL10, cavity with blinds and motor, glazing GT12 Spandrel panel: glazing GL10, air cavity aluminium sheet and profiles, rockwool and steel sheet Horizontal spandrel: External GRC feature in front of aluminium sheet, air cavity, rockwool and steel sheet Aluminium profiles: 320mm deep Firestop at floor edge: 120 x 90 mm Lamatherm (mineral wool) with steel sheet on top Performance in accordance with CE-marking nr. 2023-91251. | Product part | RSL | |------------------|----------| | Triple glazing | 25 years | | Single glazing | 25 years | | Gaskets | 30 years | | Sealant | 25 years | | Aluminium blinds | 25 years | | Blind motor | 10 years | | All other parts | 60 years | ### RSI Product The curtain wall facade has a reference service life of 60 years. # RSL parts The facade consists of various parts with different service lifetimes. During the reference service life (RSL) of the facade (60 years), several parts like glazing, sealants and gaskets need to be replaced. The replacement of these parts has been accounted for in life cycle stage B3. The reference service life of the product parts in this report is based on the estimated service life, as defined in BS ISO 15686-1, which Scheldebouw provides to the client in their general guarantees and warranties schedule. For materials with varying service life categories the shortest period is taken as a conservative approach. | Component (> 1%) | Amount (kg / m2) | |-------------------------------------|------------------| | Triple glazing | 31,28 | | Single glazing | 27,59 | | Anodised aluminium extrusions | 52,89 | | Thermal breaks | 4,78 | | GRC | 17,75 | | Anodised aluminium sheets | 3,93 | | Mineral wool insulation | 3,77 | | Pre-galvanised steel sheets | 12,62 | | Galvanised steel bracket plate | 9,39 | | Chromium steel parts e.g. fasteners | 1,50* | | Gaskets | 1,32* | | Sealant | 0,80* | | Blind | 0,83* | | Blind motor | 0,21* | ^{(*) &}lt; 1% of total mass, but included for completeness of the assessment # **SCOPE AND TYPE** The input data are representative for facade type EWS01 of the project Holland Park in Oslo, a product produced by Scheldebouw B.V. in Middelburg, The Netherlands. The data are representative for building site Oslo and production location Middelburg with suppliers located in Europe. In absence of predefined waste / end-of-life scenarios for Norway, the Dutch scenarios are used, because they are deemed representative. LCA method R<THINK: EN15804+A2:2019 LCA software**: Simapro 9.1.1 Characterisation method: EN 15804 +A2 Method v1.0 LCA database profiles: EcoInvent version 3.6 Version database: v3.17 (2024-05-22) (**) Used for calculating the characterised results of the environmental profiles within R<THINK. | PROD | OUCT ST | AGE | CONSTRU
PROCESS | | | | US | ER STAC | GE. | | | EN | D OF L | IFE STA | GE | BENEFITS AND
LOADS BEYOND
THE SYSTEM
BOUNDARIES | |---------------------|-----------|---------------|------------------------|----------|-----|-------------|--------|-------------|---------------|------------------------|-----------------------|----------------------------|-----------|------------------|----------|--| | Raw material supply | Transport | Manufacturing | Transport gate to site | Assembly | Use | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | De-construction demolition | Transport | Waste processing | Disposal | Reuse- Recovery – Recycling-
potential | | A1 | A2 | А3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1 | C2 | C3 | C4 | D | | Х | Х | Х | Х | Х | Х | Х | Х | ND | ND | ND | ND | Χ | Х | Х | Х | Х | X= Modules Assessed ND= Not Declared ### **REPRESENTATIVENESS** The input data are representative for facade type EWS01 of the project Holland Park in Oslo, a product produced by Scheldebouw B.V. in Middelburg, The Netherlands. The data are representative for building site Oslo and production location Middelburg with suppliers located in Europe. # **ENVIRONMENT IMPACT per functional unit or declared unit (core indicators A2)** | | Unit | A1 | A2 | A3 | A1-
A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | B6 | В7 | C1 | C2 | C3 | C4 | D | |--------------|-----------------|------|------|-------|-----------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | GWP- | kg | 7,20 | 2,46 | 5,59 | 8,01 | 1,06 | 3,52 | 0,00 | 4,62 | 1,96 | 0,00 | 0,00 | 0,00 | 0,00 | 6,95 | 1,41 | 3,28 | 3,17 | -4,17 | | total | CO2 eq. | E+02 | E+01 | E+01 | E+02 | E+01 | E+01 | E+00 | E+00 | E+02 | E+00 | E+00 | E+00 | E+00 | E-02 | E+00 | E+01 | E-01 | E+02 | | GWP- | kg | 7,11 | 2,46 | 6,13 | 7,97 | 1,06 | 2,90 | 0,00 | 5,66 | 1,94 | 0,00 | 0,00 | 0,00 | 0,00 | 6,65 | 1,41 | 3,23 | 3,15 | -4,09 | | fossil | CO2 eq. | E+02 | E+01 | E+01 | E+02 | E+01 | E+01 | E+00 | E+00 | E+02 | E+00 | E+00 | E+00 | E+00 | E-02 | E+00 | E+01 | E-01 | E+02 | | GWP- | kg | 1,64 | 1,14 | -5,68 | -4,03 | 3,68 | 5,98 | 0,00 | 8,93 | 1,35 | 0,00 | 0,00 | 0,00 | 0,00 | 2,73 | 6,51 | 4,65 | 1,72 | -6,13 | | biogenic | CO2 eq. | E+00 | E-02 | E+00 | E+00 | E-03 | E+00 | E+00 | E-03 | E+00 | E+00 | E+00 | E+00 | E+00 | E-03 | E-04 | E-01 | E-03 | E-01 | | GWP- | kg | 7,17 | 9,02 | 1,97 | 7,38 | 4,40 | 2,52 | 0,00 | 1,69 | 2,98 | 0,00 | 0,00 | 0,00 | 0,00 | 2,74 | 5,17 | 9,18 | 9,26 | -6,61 | | luluc) | CO2 eq. | E+00 | E-03 | E-01 | E+00 | E-03 | E-01 | E+00 | E+00 | E-01 | E+00 | E+00 | E+00 | E+00 | E-04 | E-04 | E-03 | E-05 | E+00 | | ODP | kg | 5,83 | 5,43 | 4,71 | 6,84 | 2,31 | 2,42 | 0,00 | 5,47 | 2,26 | 0,00 | 0,00 | 0,00 | 0,00 | 4,56 | 3,11 | 1,49 | 5,92 | -3,17 | | OBI | CFC11 eq. | E-05 | E-06 | E-06 | E-05 | E-06 | E-06 | E+00 | E-07 | E-05 | E+00 | E+00 | E+00 | E+00 | E-09 | E-07 | E-06 | E-08 | E-05 | | AP | mol | 5,04 | 1,43 | 3,01 | 5,48 | 1,04 | 1,91 | 0,00 | 3,21 | 1,66 | 0,00 | 0,00 | 0,00 | 0,00 | 5,19 | 8,18 | 7,67 | 1,56 | -2,87 | | Ai | H+ eq. | E+00 | E-01 | E-01 | E+00 | E-01 | E-01 | E+00 | E-02 | E+00 | E+00 | E+00 | E+00 | E+00 | E-04 | E-03 | E-02 | E-03 | E+00 | | EP- | kg | 3,31 | 2,48 | 2,88 | 3,63 | 9,74 | 1,24 | 0,00 | 1,96 | 6,25 | 0,00 | 0,00 | 0,00 | 0,00 | 4,78 | 1,42 | 5,01 | 3,49 | -1,73 | | freshwater | PO4 eq. | E-02 | E-04 | E-03 | E-02 | E-05 | E-03 | E+00 | E-04 | E-03 | E+00 | E+00 | E+00 | E+00 | E-06 | E-05 | E-04 | E-06 | E-02 | | EP- | kg | 7,05 | 5,03 | 5,40 | 8,09 | 3,11 | 2,86 | 0,00 | 2,10 | 2,75 | 0,00 | 0,00 | 0,00 | 0,00 | 5,71 | 2,88 | 1,40 | 5,55 | -3,47 | | marine | N eq. | E-01 | E-02 | E-02 | E-01 | E-02 | E-02 | E+00 | E-02 | E-01 | E+00 | E+00 | E+00 | E+00 | E-05 | E-03 | E-02 | E-04 | E-01 | | EP- | mol | 7,79 | 5,55 | 5,79 | 8,92 | 3,44 | 3,18 | 0,00 | 1,11 | 3,28 | 0,00 | 0,00 | 0,00 | 0,00 | 7,43 | 3,18 | 1,61 | 5,63 | -4,03 | | terrestrial | N eq. | E+00 | E-01 | E-01 | E+00 | E-01 | E-01 | E+00 | E-01 | E+00 | E+00 | E+00 | E+00 | E+00 | E-04 | E-02 | E-01 | E-03 | E+00 | | POCP | kg | 2,47 | 1,58 | 1,70 | 2,79 | 9,44 | 9,83 | 0,00 | 2,21 | 8,64 | 0,00 | 0,00 | 0,00 | 0,00 | 2,00 | 9,07 | 4,50 | 1,66 | -1,37 | | | NMVOC eq. | E+00 | E-01 | E-01 | E+00 | E-02 | E-02 | E+00 | E-02 | E-01 | E+00 | E+00 | E+00 | E+00 | E-04 | E-03 | E-02 | E-03 | E+00 | | ADP-minerals | kg | 7,96 | 6,24 | 3,36 | 1,14 | 2,40 | 2,60 | 0,00 | 1,22 | 8,02 | 0,00 | 0,00 | 0,00 | 0,00 | 4,96 | 3,57 | 3,11 | 1,57 | 2,25 | | & metals | Sb eq. | E-02 | E-04 | E-02 | E-01 | E-04 | E-03 | E+00 | E-04 | E-03 | E+00 | E+00 | E+00 | E+00 | E-06 | E-05 | E-04 | E-06 | E-01 | | ADP-fossil | MJ, net | 9,36 | 3,71 | 8,40 | 1,06 | 1,56 | 3,61 | 0,00 | 3,71 | 2,41 | 0,00 | 0,00 | 0,00 | 0,00 | 9,09 | 2,13 | 1,33 | 4,45 | -4,99 | | | calorific value | E+03 | E+02 | E+02 | E+04 | E+02 | E+02 | E+00 | E+01 | E+03 | E+00 | E+00 | E+00 | E+00 | E-01 | E+01 | E+02 | E+00 | E+03 | | WDP | m3 world | 3,14 | 1,33 | 3,78 | 3,53 | 5,16 | 1,20 | 0,00 | 3,50 | 4,37 | 0,00 | 0,00 | 0,00 | 0,00 | 6,92 | 7,61 | 1,85 | 6,77 | -5,69 | | | eq. Deprived | E+02 | E+00 | E+01 | E+02 | E-01 | E+01 | E+00 | E+00 | E+01 | E+00 | E+00 | E+00 | E+00 | E-02 | E-02 | E+00 | E-02 | E+01 | GWP-total = Global Warming Potential total GWP-fossil = Global Warming Potential fossil fuels GWP-biogenic = Global Warming Potential biogenic GWP-luluc = Global Warming Potential land use and land use change ODP = Depletion potential of the stratospheric ozone layer AP = Acidification Potential, Accumulated Exceedence EP-freshwater = Eutrophication Potential, fraction of nutrients reaching freshwater end compartment EP-marine = Eutrophication Potential, fraction of nutrients reaching marine end compartment EP-terrestrial = Eutrophication Potential, Accumulated Exceedence POCP = Formation potential of tropospheric ozone photochemical oxidants ADP-minerals&metals = Abiotic Depletion Potential for non-fossil resources [2] ADP-fossil = Abiotic Depletion for fossil resources potential [2] WDP = Water (user) deprivation potential, deprivation-weighted water consumption [2] ### Disclaimer [2] - The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator # **ENVIRONMENT IMPACT per functional unit or declared unit (additional indicators A2)** | | Unit | A1 | A2 | A3 | A1-A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1 | C2 | C3 | C4 | D | |-------|-----------|------|------|------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | PM | Disease | 4,76 | 2,21 | 2,43 | 5,22 | 8,60 | 1,80 | 0,00 | 3,67 | 1,56 | 0,00 | 0,00 | 0,00 | 0,00 | 3,73 | 1,27 | 9,30 | 2,90 | -2,78 | | | incidence | E-05 | E-06 | E-06 | E-05 | E-07 | E-06 | E+00 | E-07 | E-05 | E+00 | E+00 | E+00 | E+00 | E-09 | E-07 | E-07 | E-08 | E-05 | | IRP | kBq | 3,82 | 1,56 | 3,02 | 4,28 | 6,57 | 1,66 | 0,00 | 1,53 | 8,45 | 0,00 | 0,00 | 0,00 | 0,00 | 1,65 | 8,91 | 5,71 | 1,84 | -1,92 | | | U235 eq. | E+01 | E+00 | E+00 | E+01 | E-01 | E+00 | E+00 | E-01 | E+00 | E+00 | E+00 | E+00 | E+00 | E-02 | E-02 | E-01 | E-02 | E+01 | | ETP- | CTUe | 2,09 | 3,31 | 2,03 | 2,33 | 1,34 | 8,61 | 0,00 | 1,80 | 5,59 | 0,00 | 0,00 | 0,00 | 0,00 | 4,11 | 1,90 | 6,82 | 1,08 | -8,14 | | fw | | E+04 | E+02 | E+03 | E+04 | E+02 | E+02 | E+00 | E+02 | E+03 | E+00 | E+00 | E+00 | E+00 | E+00 | E+01 | E+02 | E+03 | E+03 | | HTP-c | CTUh | 1,54 | 1,07 | 6,29 | 1,61 | 4,83 | 5,67 | 0,00 | 8,67 | 1,40 | 0,00 | 0,00 | 0,00 | 0,00 | 1,97 | 6,15 | 1,48 | 1,16 | -8,78 | | | | E-06 | E-08 | E-08 | E-06 | E-09 | E-08 | E+00 | E-09 | E-07 | E+00 | E+00 | E+00 | E+00 | E-10 | E-10 | E-08 | E-10 | E-07 | | HTP- | CTUh | 2,15 | 3,62 | 1,43 | 2,33 | 1,43 | 8,39 | 0,00 | 1,38 | 3,84 | 0,00 | 0,00 | 0,00 | 0,00 | 4,63 | 2,07 | 4,60 | 3,98 | -6,25 | | nc | | E-05 | E-07 | E-06 | E-05 | E-07 | E-07 | E+00 | E-07 | E-06 | E+00 | E+00 | E+00 | E+00 | E-09 | E-08 | E-07 | E-09 | E-06 | | SQP | | 2,15 | 3,22 | 1,01 | 3,48 | 1,21 | 1,23 | 0,00 | 1,45 | 1,02 | 0,00 | 0,00 | 0,00 | 0,00 | 5,31 | 1,84 | 1,24 | 8,93 | -7,30 | | | | E+03 | E+02 | E+03 | E+03 | E+02 | E+02 | E+00 | E+02 | E+03 | E+00 | E+00 | E+00 | E+00 | E-01 | E+01 | E+02 | E+00 | E+02 | PM = Potential incidence of disease due to PM emissions IRP = Potential Human exposure efficiency relative to U235 [1] ETP-fw = Potential Comparative Toxic Unit for ecosystems [2] HTP-c = Potential Comparative Toxic Unit for humans [2] HTP-nc = Potential Comparative Toxic Unit for humans, non-cancer [2] SQP = Potential soil quality index [2] ### Disclaimer [1] - This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste. # Disclaimer [2] - The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator. # OUTPUT FLOWS AND WASTE CATEGORIES per functional unit or declared unit (A1 / A2) | | Unit | A1 | A2 | A3 | A1-A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1 | C2 | C3 | C4 | D | |-------|------|------|------|------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | HWD | ka | 2,11 | 9,41 | 1,35 | 3,47 | 3,63 | 1,93 | 0,00 | 9,05 | 1,98 | 0,00 | 0,00 | 0,00 | 0,00 | 1,14 | 5,39 | 3,58 | 5,15 | 4,59 | | HWD | kg | E-01 | E-04 | E-01 | E-01 | E-04 | E-02 | E+00 | E-05 | E-02 | E+00 | E+00 | E+00 | E+00 | E-06 | E-05 | E-01 | E-06 | E-01 | | NHWD | kg | 1,63 | 2,36 | 1,18 | 1,99 | 8,67 | 9,19 | 0,00 | 1,74 | 7,05 | 0,00 | 0,00 | 0,00 | 0,00 | 6,99 | 1,35 | 6,02 | 2,50 | -1,05 | | NHWD | Ng. | E+02 | E+01 | E+01 | E+02 | E+00 | E+00 | E+00 | E+00 | E+01 | E+00 | E+00 | E+00 | E+00 | E-02 | E+00 | E+00 | E+01 | E+02 | | RWD | kg | 3,59 | 2,44 | 2,86 | 4,12 | 1,03 | 1,50 | 0,00 | 2,02 | 9,84 | 0,00 | 0,00 | 0,00 | 0,00 | 8,13 | 1,40 | 6,27 | 2,71 | -1,84 | | KWD | ^g | E-02 | E-03 | E-03 | E-02 | E-03 | E-03 | E+00 | E-04 | E-03 | E+00 | E+00 | E+00 | E+00 | E-06 | E-04 | E-04 | E-05 | E-02 | | CRU | kg | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | | CNO | ^g | E+00 | MFR | kg | 0,00 | 0,00 | 1,01 | 1,01 | 0,00 | 4,59 | 0,00 | 0,00 | 6,34 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 1,36 | 0,00 | 0,00 | | IVIFI | Ng. | E+00 | E+00 | E+01 | E+01 | E+00 | E+00 | E+00 | E+00 | E+01 | E+00 | E+00 | E+00 | E+00 | E+00 | E+00 | E+02 | E+00 | E+00 | | MER | kg | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | | IVIER | Ng. | E+00 | FFF | MJ | 0,00 | 0,00 | 5,96 | 5,96 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 5,78 | | LCC | 1417 | E+00 E+01 | | ETE | МЈ | 0,00 | 0,00 | 1,03 | 1,03 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 9,95 | | | 1413 | E+00 | E+00 | E+01 | E+01 | E+00 E+01 | HWD = Hazardous Waste Disposed RWD = Radioactive Waste Disposed MFR = Materials for recycling EEE = Exported Electrical Energy NHWD = Non Hazardous Waste Disposed CRU = Components for reuse MER = Materials for energy recovery ETE = Exported Thermal Energy # RESOURCE USE per functional unit or declared unit (A1 / A2) | | Unit | A1 | A2 | А3 | A1-
A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1 | C2 | C3 | C4 | D | |-------|------|--------------|--------------|--------------|--------------|-------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------| | PERE | MJ | 2,16
E+03 | 4,65
E+00 | 1,56
E+02 | 2,32
E+03 | 2E+00 | 3E+02 | 0,00
E+00 | 4E+01 | 2E+02 | 0E+00 | 0E+00 | 0E+00 | 0E+00 | 1E+01 | 3E-01 | 1E+01 | 1E-01 | -2
E+03 | | PERM | MJ | 0,00
E+00 | 0,00
E+00 | 4,90
E+01 | 4,90
E+01 | 0E+00 | 1E+00 | 0,00
E+00 | 0E+00 | PERT | MJ | 2,16
E+03 | 4,65
E+00 | 2,05
E+02 | 2,37
E+03 | 2E+00 | 3E+02 | 0,00
E+00 | 4E+01 | 2E+02 | 0E+00 | 0E+00 | 0E+00 | 0E+00 | 1E+01 | 3E-01 | 1E+01 | 1E-01 | -2
E+03 | | PENRE | MJ | 9,76
E+03 | 3,94
E+02 | 8,37
E+02 | 1,10
E+04 | 2E+02 | 4E+02 | 0,00
E+00 | 4E+01 | 2E+03 | 0E+00 | 0E+00 | 0E+00 | 0E+00 | 9E-01 | 2E+01 | 1E+02 | 5E+00 | -5
E+03 | | PENRM | MJ | 2,05
E+02 | 0,00
E+00 | 5,97
E+01 | 2,65
E+02 | 0E+00 | 8E+00 | 0,00
E+00 | 0E+00 | 9E+01 | 0E+00 -5
E+00 | | PENRT | MJ | 9,97
E+03 | 3,94
E+02 | 8,97
E+02 | 1,13
E+04 | 2E+02 | 4E+02 | 0,00
E+00 | 4E+01 | 3E+03 | 0E+00 | 0E+00 | 0E+00 | 0E+00 | 9E-01 | 2E+01 | 1E+02 | 5E+00 | -5
E+03 | | SM | kg | 2,00
E+01 | 0,00
E+00 | 2,53
E+00 | 2,26
E+01 | 0E+00 | 7E-01 | 0,00
E+00 | 0E+00 | 4E-01 | 0E+00 | RSF | MJ | 0,00
E+00 | 0,00
E+00 | 0,00
E+00 | 0,00
E+00 | 0E+00 | 0E+00 | 0,00
E+00 | 0E+00 | NRSF | MJ | 0,00
E+00 | 0,00
E+00 | 0,00
E+00 | 0,00
E+00 | 0E+00 | 0E+00 | 0,00
E+00 | 0E+00 | FW | m3 | 1,76
E+01 | 4,52
E-02 | 1,45
E+00 | 1,91
E+01 | 2E-02 | 2E+00 | 0,00
E+00 | 3E-01 | 2E+00 | 0E+00 | 0E+00 | 0E+00 | 0E+00 | 9E-02 | 3E-03 | 9E-02 | 5E-03 | -8
E+00 | PERE = Use of renewable energy excluding renewable primary energy resources PERM = Use of renewable energy resources used as raw materials PERT = Total use of renewable primary energy resources PENRE = Use of non-renewable primary energy resources excluding non-renewable energy resources used as raw materials PENRM = Use of non-renewable primary energy resources used as raw materials PENRT = Total use of non-renewable primary energy resources SM = Use of secondary materials RSF = Use of renewable secondary fuels NRSF = Use of non-renewable secondary fuels FW = Use of net fresh water # BIOGEEN CARBON CONTENT per functional unit or declared unit (A1 / A2) | | Unit | A1 | A2 | A3 | A1-A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1 | C2 | C3 | C4 | D | |-------|-------|------|------|------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | DDCox | Va C | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | | BBCpr | Kg C | E+00 | BCCpa | lua C | 0,00 | 0,00 | 5,83 | 5,83 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | | вссра | kg C | E+00 BCCpr = Biogenic carbon content in product BCCpa = Biogenic carbon content in packaging ### **CALCULATION RULES** **CUT-OFF CRITERIA** There is no cut-off applied for the inputs or outputs of any of the processes. # TIME PERIOD DATA COLLECTION Background data is primarily based on EcoInvent 3.6. Foreground data is <2 years and background data <10 years. The data quality is considered to be good. material quantities: design specific suppliers: FY2023 factory: FY2023 building site: following CWCT emissions: n/a Fiscal Year 2023, refers to the financial year starting from 1st of April 2022, and ending on 31st of March 2023. ### ALLOCATION Allocation is applied for recycling at end-of-life of various materials according to EN 15804 rules. # **SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION** Life cycle stages A1-A3 (production) Scheldebouw B.V. produce the curtain wall panels in their factory in Middelburg. The various parts and materials are sourced from various suppliers as semi-finished products, enter the factory and are assembled into a facade panel. After assembly, the facade elements are packed and made ready for transport to the building site together with the brackets and other materials for fixing and/or closure. Semi-finished products of the suppliers (cradle to supplier gate) are included in stage A1 of this LCA study. The transport movements between suppliers and Scheldebouw are included in stage A2 and all activities in the Scheldebouw assembly location in Middelburg are included in stage A3. The production stage consists of the extraction of raw materials, transportation of the raw materials, processing the raw materials into sub-components and the assembly of the sub-components into the end-product. The required energy for production, external treatments, ancillary materials, packaging material and production emissions are included. | Supplier distances (stage A2) | km | |-----------------------------------|------| | Glazing | 1516 | | Aluminium profiles | 1154 | | Aluminium sheet work | 470 | | Mineral wool | 86 | | Steel sheet work | 167 | | Steel brackets | 427 | | Gaskets | 246 | | Fasteners | 46 | | Sealant, incl. primer and cleaner | 156 | | Blinds and blind motor | 184 | | GRC | 994 | | Wooden packaging | 10 | | Plastic packaging | 10 | # Life cycle stages A4-A5 (construction) This stage consists of the transport of the product from production plant to the construction site. It also includes the loss of material during construction. The additional needed production, transport and end-of-life treatment of the lost material during construction is included. The end-of-life of packaging material up to the end-of-waste state or disposal of final residues is also included. The energy use for installation of the product is taken into account. The facade elements are delivered on the building site including fastening and closure materials (floor brackets and fire stop). The facade elements are lifted onto the floors of the building and installed. After that, the floor edge detail is completed by applying the mineral wool and steel sheets. The transport movements between Scheldebouw Middelburg and the building site are included in stage A4. All activities on the building site are included in stage A5 and modelled following the CWCT methodology. Transport to the construction site consists of the following: | Transport conveyance | Distance | Transported mass [kg] | |---------------------------------------|----------|---------------------------| | Lorry (truck): Middelburg-Zeebrugge | 84 km | | | Transoceanic ship: Zeebrugge-Göteborg | 972 km | | | Lorry (truck): Göteborg-Oslo | 303 km | | | Total: | 1359 km | 172.7 kg / m ² | # Life cycle stages B1-B3 (use stage) This stage consists of the impacts arising from components of the building and construction works during their use. The facade construction itself is assumed to have negligible environmental impact during its use stage B1. Cleaning of the facade needs to be done twice a year and is modelled in stage B2 following CWCT in accordance with EN 17074. The facade consists of various parts with different service lifetimes. During the reference service life (RSL) of the facade (60 years), several parts like glazing, sealants and gaskets need to be replaced. The replacement of these parts has been accounted for in life cycle stage B3. Product replacement (B4) and renovation (B5) are not considered. Operational water and energy use (B6-7) are not considered. ### Life cycle stages C1-C4 (end of life) When the end of the life stage of the building is reached, the de-construction/demolition begins. This EPD includes de- construction/demolition (C1), the necessary transport (C2) from the demolition site to the sorting location and distance to final disposal. The end of life stage includes the final disposal to landfill (C4), incineration (C3) and needed recycling processes up to the end-of-waste point (C3). Loads and benefits of recycling, re-use and exported energy are part of module D. The default end-of-life scenarios of the annex (november 2020) to the NMD Determination method v1.1 have been used for the various materials in the product. | Waste scenario | Landfill [%] | Incineration [%] | Recycling [%] | |------------------------------|--------------|------------------|---------------| | Glazing | 30 | 0 | 70 | | Aluminium | 3 | 3 | 94 | | Thermal breaks | 20 | 80 | 0 | | GRC | 1 | 0 | 99 | | Mineral wool insulation | 85 | 5 | 10 | | Steel sheets and brackets | 5 | 0 | 95 | | Gaskets | 10 | 85 | 5 | | Chromium steel | 1 | 0 | 99 | | Sealant, primer, cleaner | 0 | 100 | 0 | | Packaging (wood and plastic) | 10 | 85 | 5 | | Blind motor | 5 | 5 | 90 | | Transport by "Lorry (Truck), unspecified (default) market group for (GLO)" | Distance [km] | |--|---------------| | Landfill | 100 | | Incineration | 150 | | Recycling | 50 | ### **DECLARATION OF SVHC** The product does not contain any substances listed in the "Candidate List of Substances of Very High Concern (SVHC) for authorisation" exceeding 0.1% of the weight of the product. ### **REFERENCES** # CWCT Centre for Window and Cladding Technology "How to calculate the embodied carbon of facades: A methodology", Issue 1, September 2022 # EN 15804+A2 EN 15804+A2: 2019: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products # ISO 14040 ISO 14040:2006-10, Environmental management - Life cycle assessment - Principles and framework; EN ISO 14040:2006 # ISO 14044 ISO 14044:2006-10, Environmental management - Life cycle assessment - Requirements and guidelines; EN ISO 14040:2006 #### ISO 14025 ${\sf ISO~14025:2011-10:} \ Environmental\ labels\ and\ declarations-Type\ III\ environmental\ declarations-Principles\ and\ procedures$ # MRPI verification protocol MRPI®-EPD verification protocol November 2020.v4.0 # **REMARKS** This declaration is only valid for the specific design of this project and facade type.